Реактивное движение в природе и технике - реферат. Реферат реактивное движение Реактивное движение в технике кратко

Реактивное движение в природе и в технике - весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: "Реактивное движение в быту, природе и технике".

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары - "живые торпеды"

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия - мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется "живой торпедой". Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников - макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них - отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

"Бешеный огурец"

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных - созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо закон сохранения импульса иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как "формула Циолковского". Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, - это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике "Восток" облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг - первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году "Вега-1" и "Вега-2" (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике - это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные открытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ


Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог


Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

РАБОТУ ВЫПОЛНИЛ:

УЧЕНИК 10 КЛ

САДОВ ДМИТРИЙ

Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в технике

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т. е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.

Идея была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.

Устройство ракеты

В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону

https://pandia.ru/text/80/073/images/image004_6.jpg" width="172 height=184" height="184">

Осьминог

Каракатица

Медуза

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Слайд 2

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Слайд 3

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами.

Слайд 4

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Слайд 5

Кальмар

Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет)

Слайд 6

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Слайд 7

Летающий кальмар

Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Слайд 8

Осьминог

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.


Применение реактивного движения в природе Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.




Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.




Кальмар Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.


Летающий кальмар Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.


Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.


Бешеный огурец В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.